

#### Redefining Private Equity Real Estate Risk

#### Richard Gold & Emilian Belev December 7, 2010

Northfield Information Services, Inc. 77 North Washington Street 9<sup>th</sup> Floor Boston, MA 02114 USA Tel: 617.451.2222 http://www.northinfo.com



#### **Risk Estimation for Real Estate**

- Private equity real estate volatility and correlation are hard to estimate
- Real observations of total returns are very few
- More data than assets required for stable correlation estimation



#### Not a New Problem

#### Lots of early research on the measurement problems

- Fisher, Jeffrey D., "A Repeat Sales Index for Commercial Real Estate Using Sold Properties in the NCREIF Database", Real Estate Finance 2000
- Fisher, Jeffrey D. and David Geltner. "De-Lagging the NCREIF Index: Transaction Prices and Reverse Engineering", Real Estate Finance 2000
- Graff, Richard and Michael Young, "Real Estate Return Correlations: Real-World Limitations on Relationships Inferred from NCREIF Data", Journal of Real Estate Finance and Economics", 1996.
- Geltner, David, "How Accurate is the NCREIF Index as a Benchmark and Who Cares?", Real Estate Finance, 1998



## **Risk Estimation for Real Estate**

- Even the broad market is hard to measure
- Real estate indices are biased because of appraisal smoothing
  - Appraisals only "work" efficiently in equilibrium
  - It breaks down during soft markets and leads to price distortions during bubbles
- Appraisal smoothing also leads to serial correlation in returns



#### Public Versus Private Real Estate

#### Returns



Northfield Information Services: Systems, Models, Insights & Solutions



## This Is Not a New Problem

- Much published and unpublished research on this issue but no real solution
  - Appraisal-based pricing remains the cornerstone of the industry's primary benchmark NCREIF
- In U.S. Moody's/Real CPPI repeat sales index similar to S&P/Case-Shiller but extremely small and unreliable sample
- Hedged REITs limited success



#### **One Solution - Factor Models**

- Factor models
  - Relate the returns of each asset to a set of underlying economic drivers
  - Once factor sensitivities are determined it is possible to infer cross-asset relationships
- Law of One Price: Changes in Prices of Similar Things Must Move Similarly



#### Factor Models con't

- Possible to estimate correlations for a large number of assets from a small number of common economic drivers
- Each asset's risks expressed as a series of exposures to a set of common drivers plus idiosyncratic / asset-specific risk
- No need for appraisals to determine volatility/risk as well as future cash flow (CF) and Net Operating Income (NOI)



### Portfolio Risk

- Multiple asset types
  - Stocks, bonds, private, public, etc.
  - Some liquid, some illiquid
- Many countries, regions, market, submarkets
- However, Northfield's "Everything Everywhere" Model (EE) is designed specifically for this task
  - Any asset class is exposed to various economic factors plus exchange rates
  - A subset of factor exposures relevant each asset
  - Plus... idiosyncratic / asset-specific risk



#### EE Model

#### • Factors include:

- Six economic sectors
  - Forward looking measures of economic activity but also are real estate demand drivers

#### • Five geographic regions – global coverage

- o also shape future economic and real estate demand
- Investor outlook/sentiment factors:
  - Relative returns of large cap to small cap stocks
  - Relative returns of developed to emerging country stocks
  - Relative returns of "value" stocks (high dividend) with "growth" stocks (no-dividend)



#### EE Model con't

- Changes in oil prices
- Changes in bond market index returns
- Changes measures of the interest rate yield curve:
  - "Shift" the average level of interest rates
  - "Twist" the spread between long-term and short-term rates
  - "Butterfly" the curvature of the yield curve
- EE incorporates a very detailed binomial model of the range of possible future interest rate conditions. This is important for working out possible mortgage prepayment scenarios



# Bond Pricing in EE



#### Northfield Information Services: Systems, Models, Insights & Solutions



#### EE Model con't

#### • Credit Risk

- EE tracks credit related yield spreads for each economic and each rating agency level
- Credit risk equivalent to a partial exposure to the firm's equity
- Credit spread has an implied default rate
- Firm-specific credit problems can be addressed by adjusting the idiosyncratic asset-specific risk of the affect financial instruments



### Real Estate in EE

- Integrating real estate investment positions into EE starts with modeling risk from cash flows without considering rent volatility
- A convenient framework:
  - Consider lease units within properties to be long (junk) bonds bringing in rent cash flows; herein referred to as Property Asset Securities
  - Represent mortgage financing as short bonds generating outgoing cash flows - interest and principal repayments; herein referred to as Financing Securities



# Real Estate in EE (con't)

Property Asset Securities - Cash Flows

- Cash flows are based on projected NOI (Net Operating Income) which changes with projected inflation
- NOI estimation should take into consideration changing projected vacancy (normally, vacant space is more expensive to landlord)
- Vacancy is projected to move from current to a long term equilibrium structural vacancy
- Renewal rate of existing tenants is inversely related to vacancy



#### Property Asset Securities: CF Example Low Initial Vacancy



Northfield Information Services: Systems, Models, Insights & Solutions



### Real Estate in EE (con't)

Property Asset Securities - Cash Flows

- Inputs for Forecasting Rent Cash Flows:
  - Current rent and expenses (NOI)
  - Current occupancy / vacancy
  - Structural vacancy & reversion
  - Down-time between leases
  - Growth of rent and expense cash flows over time
  - Useful life of building

Northfield Information Services: Systems, Models, Insights & Solutions



## Direct Property / Real Estate

- A "bottom-up" property-by-property approach
- Each property is treated as a composite asset
  - a package of risk exposures to the EE common factors plus idiosyncratic risks



# The Elements of Property Risk

- Three basic property risk exposures:
  - Risks based on "steady-state" Cash Flow (CF) assumptions for existing and expected leases
  - Risks of future fluctuations in rents and occupancy
  - Risks related to mortgage financing



## Steady State Cash Flow

- Assume property life 50 years
- Named lead tenants and then all others collectively
  - For current lease period, consider operating expenses and expected losses from defaults given the credit of the tenant
- Forecast change in rents using regression-based estimates integrating EE model factors:
  - CF adjusted for probability of lease renewal. Non-renewed leases are assumed to be taken over by a "generic" tenant
  - Expected downtime between leases incorporate into CFs for nonrenewals
  - Adjust least default rates losses for the probability of generic tenant in second and subsequent leases
  - Assumes inflation-adjusted or user supplied rental growth after 10<sup>th</sup> year.



#### Little Volatility in Values: But Big Changes in Rents



Northfield Information Services: Systems, Models, Insights & Solutions



# Steady State Cash Flow con't

- Repeat yearly for the useful life of the building to form expected CF stream
  - Different discount rates apply to each year's CF according to the current or assumed yield curve
  - All CF streams will have exposure to the three factors that describe changes in yield curve conditions (time value of money)
  - Each CF stream can be assigned a value for idiosyncratic risk according to location, property condition, ability to sub-divide and vacancy time between leases
- Idiosyncratic risks diversify.
  - A complex of 500 apartments may have less property-specific risk than an office building with three investment grade tenants even though the individual office tenants have much better credit



# Steady State Cash Flow Risk

- Projected Cash Flow risk is specific to
- The tenant
  - Industry / business
  - Credit Rating
  - The local / national / regional economy
- "Tenant CF risk" is combined to generate composite CF
- So, each building will have specific exposures to the relevant EE factors
- So, location is not the only risk...
- Tenant risk is just as important and can be more so.



## Tenant-Related Systematic Risks

- Example: A New York office building
  - Occupied by energy companies
  - Exposed to:
  - Global market for oil and natural gas
  - Less sensitive to finance
  - Exposed to exchange rates
  - Exposed to interest rates
- Safer cash flows than an average building in Manhattan during the financial meltdown!
- Investors often buy a building in a particular market without realizing that its risk profile is similar to a building they already own!



# Steady State Cash Flow con't

- For CF and Net Operating Income (NOI) projections require property specific information:
  - Average lease length
  - Operating expenses as % of rents
  - Expected vacancy rates
  - Expected renewal rates of existing tenants
- Major tenants' lease-by-lease data
  - remaining lease period
  - renewal options
  - escalation clauses
- NOTE: These data are important to anyone interested in attempting to truly comprehend real estate risk
- Macro-level data alone does not help



# Rent and Occupancy Volatility

- Rent and occupancy levels are driven by supply and demand obviously!
- Each property "package" will include a set of risk exposures to represent rent and occupancy volatility
  - Supply of commercial space changes slowly with little immediate relationship to the EE risk factors.
  - Decisions made several years previously result in new supply today. Long lead times between construction, completion and letting.
  - Demand for commercial space is elastic
  - Can be captured by relating percentage changes in rents to the broad economic factors of the EE model



#### Rent and Occupancy Volatility con't

- Demand volatility modeled as a function of the structure of employment in the local economy;
  - Government, finance, auto manufacturing, chemicals etc.
  - London, Tokyo and NY, financial businesses are an above average share of local employment.
    - Popping of financial bubbles hits office demand hard.
  - Houston is dominated by the energy industry and employment in that sector impacts office demand - unlike Boston which has virtually no employment in the energy sector
  - All the risk exposures related to rent/occupancy risks are scaled to reflect the nature of a property
    - A property that has a triple net lease for 100 years will have zero exposure, while an apartment complex with short-term leases would have its exposures scaled accordingly. This scalar is roughly the annual percentage of lease turnover



#### Rent and Occupancy Volatility con't

- Rental change is typically modeled using the metro's employment demand profile, building stock, and vacancy rate
- Office demand will be skewed towards nonmanufacturing, non-retail employment sectors such as finance
- Once estimated, we substitute the weighted EE factors into the rental change equation for the employment index



# Mortgage Financing

- Mortgage financing is modeled as a "short" bond holding
  - A set of factor exposures to outgoing cash flows
- "Steady State" Net Operating Income (NOI) is represented as incoming CFs a long bond
- EE's binomial interest rate model is used to model the cash flows.
- Multiple mortgages and on one property can be accommodated including cross-collateralization across properties



#### Sample Retail Risk Report

| Factor                                                                                                                                                         | PortExp           | BenchExp | ActiveExp         | FactorVar          | VarContr                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------------------|--------------------|-------------------------------------------------------------------|
| CONTINENTAL EUROPE                                                                                                                                             | 0                 | 0        | 0                 | 386.993            | 0                                                                 |
| ENGLISH-SPEAKING COUNTRIES<br>SCANDINAVIA                                                                                                                      | -0.0542<br>0      | 0<br>0   | -0.0542<br>0      | 362.002<br>460.326 | -0.5386<br>0                                                      |
| SOUTH AMERICA & MEXICO<br>ASIA                                                                                                                                 | 0<br>0            | 0<br>0   | 0<br>0            | 339.245<br>448.205 | 0<br>0                                                            |
| INDUSTRIAL SECTOR<br>CONSUMER SECTOR                                                                                                                           | -0.0005<br>0.1781 | 0<br>0   | -0.0005<br>0.1781 | 495.013<br>247.761 | -0.0163<br>3.5384                                                 |
| TECHNOLOGY&HEALTH SECTOR                                                                                                                                       | 0.042             | 0        | 0.042             | 283.12             | 0.7083                                                            |
| INTEREST RATE SENSITIVE SECTR                                                                                                                                  | -0.004            | 0        | -0.004            | 387.061            | -0.0397                                                           |
| NON-ENERGY MINERALS                                                                                                                                            | 0.0008            | 0        | 0.0008            | 910.28             | 0.065                                                             |
| ENERGY MINERAL SECTOR                                                                                                                                          | 0.0001            | 0        | 0.0001            | 491.944            | 0.0037                                                            |
| S B WORLD GOVT BOND INDEX                                                                                                                                      | -0.1373           | 0        | -0.1373           | 68.6834            | 0.9918                                                            |
| OIL PRICES IN USD                                                                                                                                              | 0.017             | 0        | 0.017             | 1255.9             | 1.037                                                             |
| DEVELOPING MARKET                                                                                                                                              | -0.0417           | 0        | -0.0417           | 176.162            | 1.665                                                             |
| SIZE                                                                                                                                                           | 0.0177            | 0        | 0.0177            | 63.1763            | -0.0352                                                           |
| VALUE/GROWTH                                                                                                                                                   | 0.3341            | 0        | 0.3341            | 7.4438             | 0.0378                                                            |
| TREASURY CURVE FACTOR1                                                                                                                                         | -23.8879          | 0        | -23.8879          | 0.3247             | 143.2184                                                          |
| TREASURY CURVE FACTOR2                                                                                                                                         | -180.072          | 0        | -180.072          | 0.0036             | 52.0653                                                           |
| TREASURY CURVE FACTOR3<br>Factor Tracking Variance<br>Stock Specific Tracking Variance<br>Total Tracking Variance<br>Tracking Error<br>Total Risk of Portfolio | -2171.04          | 0        | -2171.04          | 0                  | -44.3526<br>158.3483<br>18.6123<br>176.9606<br>13.3027<br>13.3027 |

Northfield Information Services: Systems, Models, Insights & Solutions



#### **Future Enhancements**

#### **Enhanced credit risk analysis:**

Introduce a combination of Merton style credit framework and factor model approach to calculating credit risk factor exposures

Implement effects of rating transition probabilities

**Enhanced linkage between rents and EE Factors:** 

Bridge equation rather than direct substitution



Review

#### We have:

- Estimated term-structure risk exposures for projected rent cash flows
- Estimated term-structure risk exposures for the financing structure
- Estimated credit risk of tenants
- Estimated rent volatility for building



#### Review

#### We have proposed a model of the risks for the following pieces:

Projected income cash flows Financing structure Credit risk of tenants Volatility of rent and occupancy

#### We now estimate:

Value and risk of a property Contribution to variance from common factors Same effects for portfolios

#### We can then also look at some new and interesting things:

Effect of adding or subtracting a portfolio Effect of changing the financing structure Effect of hedging some or all of the interest rate risk using the bond markets

Northfield Information Services: Systems, Models, Insights & Solutions





#### • Risk Management

- Relative risk across asset classes
- Marginal impacts of investment decisions
  - o Within asset class
  - Across asset classes
- Valuation
- Hedging Strategies
  - Synthetic products
    - Eliminating credit or interest rate risk
- Mean Variance Optimization
  - Portfolio construction
- Benchmarking
  - Synthetic properties (levered or unlevered) can be constructed
  - Weighted by market cap



# Summary (con't)

- This makes the Direct Property / Real Estate Model unique
- Limitations of appraisal-based building valuation eliminated
- Results suggest that direct property risk is greater than REITs but less than equities
- Detailed information about each property and major tenants incorporated and available for analysis
- Each property analyzed by cash flow, rent/occupancy volatility, and financing
- Employs factor model to relate behavior of each asset to a set of common economic drivers
- Infer relationships between investment assets
- Integrated and consistent risk measurement across asset classes now possible



## Conclusions

- Traditional real estate benchmark is not robust
  - Significantly understate absolute and timing of risk
  - Leads to ad hoc risk and allocation targets
  - Reduces confidence in asset class
- Factor models offer a unique solution
  - Relate behavior of each asset to a set of common economic drivers, and infer relationships between investment assets
  - Real estate risk is measured 3 different ways
    - Credit risk
    - Rent change risk
    - Interest Rate Risk



### Conclusions con't

- Results are consistent with expectations
  - Shape of cash flows consistent with leasing and expense behavior
  - Credit risk represents a significant % of total risk consistent with real world experience during recent downturn
  - Leverage risk a function of term, call option, coupon rate, fixed versus floating
- Initial results show that real estate risk greater than corporate bonds but less than equities
- Methodology should elevate consideration of private equity real estate's role in a mixed asset portfolio because it frees it from its dependency on appraisal-based valuations