

Incorporating Commodities into a Multi-Asset Class Risk Model

Dan diBartolomeo, Presenting Research by TJ Blackburn

Asia Pacific Seminars November, 2013

Outline of Today's Presentation

- Institutional Participation in Commodities
- Structural Relationships to Other Asset Classes
- Basics of the Everything Everywhere Model
- Approach to Estimating Commodity Contract Factor Exposures
- Empirical Results
- Robustness Checks

Institutional Investment in Commodity Futures

- A meaningful fraction of institutional investors now participate in commodities through holding passive index baskets
 - Numerous commercial commodity indices are now offered as investment products
 - Different indices place different emphasis on various parts of commodity markets (energy, agricultural, precious metals, industrial metals)
 - Stoll and Whaley (2009) estimate institutional investment in US commodity index contracts at \$175 Billion, or between 1 and 2% of the capitalization of US equity markets
 - Other institutional investors now hold participation in commodity hedge funds as an alternative to hedge funds investing in securities

Institutional Investment in Physical Gold

- Erb and Harvey (FAJ, 2013) do an extensive study of institutional investment in physical gold
 - They estimate the total supply of physical gold in the world to be worth about \$9
 Trillion as of the study date
 - About \$1.8 Trillion is held by central banks as reserves
 - Another \$1.8 Trillion is held by non-bank institutional investors
- They estimate the contemporaneous value of global stock markets at \$48 Trillion and the portion of the bond market defined by the Barclay's Global Aggregate as \$41 Trillion
 - This implies that the average institutional investor has allocated about 2% of their marketable assets to physical gold
 - Consistent with estimates published by the World Gold Council

Review of Other Selected Literature

- Feldman and Till (2006)
 - Backwardation effects on agricultural commodity returns
- Till and Eagleeye (2006)
 - Historical analysis of commodity volatility and correlation
- Gorton and Rowenhorst (2006)
 - Risk premium in commodities are predictable from inventory effects
- Schneeweis and Kazemi (2008)
 - Momentum effects in commodity prices are structural
- Buyuksahin, Haigh and Robe (2010)
 - Correlation of commodities and equities is not increasing over time
- Black (2009)
 - Increasing commodity prices are not driven by institutional investment
- Kaplan (2010)
 - Long-only commodity index products are return/risk inefficient

A Simple Risk Decomposition

- Consider an institutional investor with \$US base currency
 - 52% Allocation to MSCI EAFE
 - 44% Allocation to Barclays Government Aggregate
 - 4% Allocation to Gold
- Example Annualized Volatility Values and Correlations
 - EAFE 12.17% , Barclays 3.25% , Gold 21.47%
 - EAFE/Barclays .23, EAFE/Gold .27, Barclays/Gold .25
- Total Portfolio Volatility = 7.11%,
 - Total variance = $50.54\%^2$
 - Crediting half of covariance to each asset in a pair, 86.26% of total variance is from equities, 8.77% from bonds, 4.97% from gold

Risk Decomposition Comments

- The risk contribution from equities dominates but commodity risk contribution is the same order of magnitude as bonds
- One possible approach to including commodities is to simply include each commodity as it's own additional factor (basically a full covariance matrix)
 - We reject the full covariance approach for three reasons
 - The observed correlation of commodities to each other and other asset classes is very unstable over time. A factor approach will separate persistent from transient effects
 - Adding lots of new factors to the model increases the potential for an illconditioned factor covariance matrix, which could impact the quality of forecast for all asset classes

The Problem with Commodity Correlation

- Correlations with other asset classes are very unstable
- For example, let's consider the correlation of the gold and the MSCI EAFE index (in \$US)
 - Daily returns for the two years ending 28 October 2013
 - Using GARCH correction for volatility shifts
 - Average correlation was .27
 - Current forecast is .28, but the *upper 90% confidence interval is .82 and the lower 90% confidence interval is -.63*
 - Calculation from V Lab at New York University
 - In a factor model, unstable correlation implies unstable factor exposures even if the model is sound

Structural Relationships to Other Asset Classes

- Many public companies either produce or consume large amounts of commodities that are widely traded
 - Operating companies are active in hedging commodity and currency exposures so investor exposures are difficult to assess
 - Bartram (2006), Bartram and Aretz (2010), Bartram, Burns and Helwege (2013)
- Exhaustible commodities (e.g. oil, gold) are directly linked to fixed income markets through Hotelling's Rule (1931)
 - Leaving a resource in the ground is an investment decision in itself
 - The price of "in-ground" commodities should grow at the risk adjusted interest rate so clearly linked to fixed income volatility
 - Limits the ability of governments or companies to control prices by adjusting availability of supply from reserves
 - diBartolomeo (1993)

Northfield Everything Everywhere Model

- Global, multi-asset class risk model introduced in 2001
 - 90 factors in total, combination of specified exogenous and statistical factors for equities from our equity models
 - Multiple geographic regions, economic sectors
 - Observed yield curves for major markets, implied yield curves for small bond markets
 - Links fixed income credit risk to equity market risks via contingent claims model from Merton (1974)
 - "On demand" data creation for derivatives
- Currently provides factor representation of more than six million individual securities, currencies and commodities
 - Annual horizon (update monthly), 10 Day horizon (updated daily)
- Extensions to non-traded asset classes including real estate, infrastructure and private equity

Commodities Previous Approach

- Previously commodity contracts were processed through our procedure for estimating risk of an asset in the absence of fundamental knowledge
 - Same procedure for estimating risk for a hedge fund with no position transparency, http://www.northinfo.com/Documents/508.pdf
- Generally produced good estimates of absolute volatility but factor exposures for commodity contracts were very unstable over time
 - Consistent with correlations between commodities and other asset classes being very unstable as previously stated

Commodities in 3rd Generation Global Model

- Three stage estimation procedure
- First stage: Subdivide the universe of commodities into four groups.
 - Intuitively you consistently get four clusters
 - Agricultural, Energy, Precious Metals, Industrial Metals
- Second stage: Using return times series history create four Principal Component Analysis (PCA) factor models
 - Done with Singular Value Decomposition (SVD)
 - Each commodity has it own exposures for the two (usually) strongest principal components defined for it's cluster
 - PCA analysis will be updated monthly, rolling 60 month estimation

Commodities New Procedure

- Third Stage: Restate the PCA factor exposures into factor set defined by the 3rd Gen. Global model. EE and 3rd Generation global model will be reconciled soon.
 - Each commodity PCA factor is treated as a new security
 - Factor loading are established by regressions of the PCA factor return time series against apparently relevant factors (energy commodities should have an obvious relationship to oil prices)
 - Regional factors are excluded
 - Algebraic restatement of commodity exposures to their group's PCA factor into the model factors is per diBartolomeo (2012)
 - Potentially test and adjust for interactions between second stage PCA factors and third stage residuals
 - Adjust specific variances to account for kurtosis and serial correlation per Parkinson (1980)

Example: Precious Metals – As of 6/09

	PC1	PC2	PC3	PC4	PC5
TOCOM-PALLADIUM CONTINUOUS	0.58	0.45	-0.22	0.11	0.63
CMX-GOLD 100 OZ CONTINUOUS	0.17	-0.43	0.32	-0.73	0.39
NYM-PALLADIUM CONTINUOUS	0.53	0.30	-0.07	-0.43	-0.66
NYM-PLATINUM CONTINUOUS	0.39	-0.08	0.80	0.44	-0.10
CMX-SILVER 5000 OZ CONTINUOUS	0.44	-0.71	-0.46	0.27	-0.10
Proportion of Variance	0.76	0.17	0.04	0.02	0.01

- First component overall market
- Second component difference between palladium vs. gold + silver
- Together these comprise 93% of variance in sample
- Remaining components probably noise not included

Example: Precious Metals – As of 6/09

- Regression onto model factors:
- PC1 Return ~ 1.8 (GLOBAL MARKET) + 2.4 (NON-ENERGY MINERALS SECTOR) + 2.8 (INTEREST RATE SENSITIVE SECTOR) + 0.04 (OIL) + 0.40 (WORLD GOVT BOND INDEX) + ϵ
- PC2 Return ~ 0.92(NON-ENERGY MINERALS SECTOR) -0.32(ENERGY MINERALS SECTOR) + $1.9(WORLD\ GOVT\ BOND\ INDEX) + \epsilon$

Empirical Test Design

- Estimate the model as of December 31 of each year from 1996 to 2011
- Form thousands of equal weighted portfolios of commodity contracts
 - Number of members from 3 to 25
 - Some portfolios draw members from just one category (e.g. energy), some draw from all categories
 - Forecast portfolio returns for each month of the subsequent year based on known
 EE factor returns
- Calculate the correlation of forecast returns with actual realized returns out of sample for each portfolio
 - Also calculate the dispersion in portfolio correlation across portfolios in the test for the same sample period

Empirical Test Results

- Agricultural commodities had the weakest but still significant results
 - Across years the average correlations between forecasts and outcomes ranged from .15 (T=2.89) for 3 contract portfolios to .22 (T = 3.24) for 15 contracts
 - In 4 out of 18 years, the average correlation is zero or negative (wrong sign) for 15 contract portfolios
- Energy commodities had the best results
 - This is natural since oil prices are a factor in the EE model
 - Across years, the average correlations for 2 contract portfolios averaged .71 (T= 19.22) and .79 (T= 27.61) for 4 contract portfolios

More Test Results

- The two metals groups were in the middle
 - For precious metals: Across years, the average correlation of 2 member portfolios was .38 (T=4.19) and .38 (T=3.65) for 4 member portfolios. Correlation across portfolios was negative in 3 years
 - For industrial metals: Across years, the average correlation of 3 member portfolios was .47 (T=7.79) and .51 (T=8.51) for 4 members portfolios
- For portfolios that drew members from the full universe of contracts, the results are very strong
 - Across years, the average correlation of 3 member portfolios was .41 (T=12.45),
 .53 (T=12.85) for 10 member portfolio and .59 (T=11.16) for 25 member (index like) portfolios
 - For 25 member portfolios the average correlation is .70 over the last ten years. For commodity indices that are heavily weighted toward energy (i.e. GSCI) the results are stronger

Commodities - Robustness Checks

- Company sector factor definitions
 - Tested both the regular sector factor return histories and revised histories based on separating producing companies from consuming companies for each type of commodity
 - Distinction was based on membership in equity portfolios used in ETFs designed to mimic commodity returns
 - Results were slightly worse for "purified" sectors but differences were not statistically significant
- Rigorous treatment of possibly spurious PCA factors
 - Miller (2006)
 - Bouchard, Laloux, Cizeau and Potters (2000) estimates a rule for the number of "apparently significant" eigenvectors in matrices known to be random

A Last Check

- We can convert the factor representation of a commodity contracts (or portfolios) and other assets (e.g. S&P 500) to the numerically equivalent full covariance matrix
 - http://www.northinfo.com/Documents/58.pdf
- We can now conveniently compare the forecasts from the Northfield model to forecasts from various time series models using the V Lab website from NYU
- I checked a bunch of items and have not found any cases where forecast differences were statistically significant at the 90% level

Conclusions

- Effectively incorporating commodities in a multi-asset class risk model is a complex task.
- Volatility properties of commodities are relatively well behaved over time, but correlations are very unstable
- We chose to relate commodities to existing model factors
 - We believe our process reasonably separates transient effects (noise) from effects which are likely to be persistent
 - Preserves the structure of the existing models which have been proven effective for larger asset classes
 - Utilizes intuitive relationships between commodities and equity behavior of related companies.
- The new approach will go into 3rd Generation model production before the end of 2013

